DB Podcast

Technologie-Schulden Generative KI: Warum ihr Einsatz zu einem Balanceakt wird

Ein Gastkommentar von Gabriel Frasconi 3 min Lesedauer

Anbieter zum Thema

Unternehmen sind derzeit gezwungen, immer mehr „Technologie-Schulden“ anzuhäufen. Das liegt unter anderem am Einsatz von KI-Tools. Allerdings verspricht generative KI auch die Lösung dieser Probleme. 

(Bild:  RomixImage/AdobeStock)
(Bild: RomixImage/AdobeStock)

CIOs stehen heute vor einem kniffligen Balanceakt mit der generativen KI. Während sie sich um die Entwicklung zukunftssicherer Anwendungen und Lösungen streiten, von denen sie enorme Renditen erwarten, insbesondere im Bereich generative KI, ist diese jedoch wie alle Formen der technologischen Innovation mit versteckten Kosten verbunden Diese „Technologie-Schulden" sind ein Teil des Risikomanagements, den CIOs im Auge haben, seit Y2K in den Mittelpunkt gestellt hat. 

Darunter fallen alle Unternehmenskosten, die beim Einsatz neuer Technologien entstehen: Beheben von Softwarefehlern, die beim Start nicht behoben werden konnten; Installieren von Patches, nachdem unbekannte Schwachstellen aufgetaucht sind; Kosten für die Modernisierung der veralteten technischen Infrastruktur. Jahrelange Unternehmensinvestitionen in  die digitale Transformation, Massenmigration zu Cloud-Software und -Systemen, immer komplexere Tech-Stacks und jetzt KI-generierter Softwarecode haben dazu beigetragen, dass die Rechnung in die Höhe schnellt.

Durch generative KI Modernisierungskosten reduzieren

Die generative KI ist hier die wichtigste neue Variable in der Gleichung. Während frühere Anwender mit jedem KI-Einsatz neue Risiken und zukünftige Schulden auf sich nehmen, bietet die Technologie eine vielversprechende Lösung für das Problem. Gartner prognostiziert, dass mit Hilfe generativer KI bis 2027 Legacy Tools ersetzt und die Modernisierungskosten von Unternehmen um 70 Prozent reduziert werden. Die Herausforderung besteht jedoch darin, dass es nicht für alle Modelle Standards gibt. Um alle Vorteile der generativen KI zu nutzen, müssen alle technischen Schulden konsequent angegangen werden – dieser Schritt ist unumgänglich. 

Technologie-Schulden der nächsten Generation

Large-Language-Modelle werden in sechs verschiedenen Medien eingesetzt: Text, Softwarecode, Bilder, Audio, Video und 3D/virtuelle Inhalte – diese Multimodalität erschwert das Management von unbekannten Risiken. Im Hinblick auf die technischen Schulden bringt generative KI dazu noch eine ganze Reihe neuer Herausforderungen mit sich. Experten zufolge gibt es jedoch Möglichkeiten, das Problem in den Griff zu kriegen:

KI-Modelle in Legacy-Systeme integrieren: Die zwei kritischen Bereiche des Schuldenrisikos sind Data Governance und die Integration von KI-Code in Altsysteme. Unternehmen, die nicht ausreichend in Datenqualität, Integration und Governance investiert haben, werden später vor großen Herausforderungen stehen. Als ersten Schritt müssen IT-Führungskräfte sicherstellen, dass ihr KI-Modell gut in die bestehende IT-Landschaft integriert werden kann.„LLMOps" einrichten, um Vorgänge und Daten zu verwalten. Die Ausarbeitung eines speziellen Governance-Rahmens für Gen-KI-Anwendungen ist eine weitere wichtige Maßnahme. IT-Führungskräfte sollten die Struktur und Strenge, die DevOps- und AIOps-Teams bei konventionelleren Softwareimplementierungen bieten, replizieren und auf die LLM-Arbeit anwenden 

Mit API-„Wrapper“ Code vor kontinuierlichen LLM-Risiken schützen: Wenn CX- oder EX-Entwicklungsteams LLMs einführen und implementieren, sind sie anfällig für gelegentliche Ausfälle und Änderungen, die über Nacht mehr Technologie Schulden anhäufen können. Interne KI-Entwicklungsteams können hier einen API-Wrapper erstellen, der es LLMs ermöglicht, ihre Ausgaben ohne Verzögerungen, Fehler oder externe Risiken abzuschließen. Angesichts des rasanten Wandels müssen Unternehmen, die LLM einführen, Wege finden, um Anwendungsentwickler vor den störenden Veränderungen zu schützen.

Kritische Risiken bei der Feinabstimmung von Sprachmodellen vermeiden: Es gibt viele offensichtliche Gründe für die Optimierung von LLM-Modellen, wie eine bessere Qualität, Genauigkeit, Klang und andere Faktoren. Weit weniger offensichtlich sind die schwerwiegenden Risiken, die eine Feinabstimmung oft mit sich bringt. Selbst etwas scheinbar so Harmloses wie das Trainieren eines Modells mit einem für das Unternehmen spezifischen Datensatz kann neue Angriffsmöglichkeiten bieten. CIOs sollten dies zur Kenntnis nehmen und sich über die zu berücksichtigenden Auswirkungen im Klaren sein.

Generative KI: Balanceakt zwischen Innovation und Schuldenmanagement

Für IT-Führungskräfte gilt eine einfache Faustregel: Sie sollten so proaktiv wie möglich sein, um neue KI-Risikofaktoren zu identifizieren und zukünftige Schulden zu vermeiden. Gleichzeitig sollten aber vielversprechende Anwendungen erkundet werden, die mit generativer KI verschiedene Formen von technischen Schulden bekämpfen. CIOs, die den Balanceakt zwischen KI-Innovation und technischem Schuldenmanagement meistern können, haben bessere Chancen, bei dem digitalen Wandel weitere unvorhergesehene Schulden zu vermeiden.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung

Generative KIGabriel Frasconi
ist VP & General Manager South Europe & DACH bei Freshworks. Das Unternehmen entwickelt KI-unterstützte Business-Software für die Bereiche IT, Kundensupport, Vertrieb und Marketing.

Bildquelle: Freshworks