Zusammen mit dem Fraunhofer-Institut IPA gelang es Wissenschaftlern, die Zellanalyse und Bewertung durch den Einsatz von KI zu automatisieren.
(Quelle: Fraunhofer IPA)
Mithilfe des am Fraunhofer IPA entwickelten TissueGrinders – einer automatisierten Miniatur-Mühle für empfindliches Zellgewebe – können Kliniken auch ohne Hilfe eines ausgebildeten Pathologen die Zellproben von Krebspatienten dank KI schnell und präzise analysieren. Davon profitieren neben den Kliniken vor allem die Patienten. Wird die Zellanalyse bereits während einer OP durchgeführt und werden nahezu sofort die richtigen Behandlungsschritte eingeleitet, bleibt den Patienten oft eine erneute OP erspart.
Während einer Krebsoperation werden schnell genaue Informationen über das entnommene Gewebe benötigt, um den Chirurgen bei seinen nächsten Schritten zu unterstützen. Dabei wird bisher eine Biopsieprobe an einen Pathologen geschickt, der beurteilt, ob das Gewebe gesund ist oder wie weit sich der Krebs ausgebreitet hat. Das kostet viel Zeit und Ressourcen.
In Zusammenarbeit mit dem Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in Mannheim, der Friedrich-Alexander-Universität Erlangen-Nürnberg und dem Universitätsklinikum Erlangen ist es Wissenschaftlern und Wissenschaftlerinnen des Max-Planck-Instituts für die Physik des Lichts und des Max-Planck-Zentrums für Physik und Medizin gelungen, die Zellanalyse und die anschließende Bewertung durch den Einsatz von Künstlicher Intelligenz (KI) weitgehend zu automatisieren. Die im Nature Biomedical Engineering veröffentlichte Studie des Teams um Dr. Despina Soteriou und Dr. Markéta Kubánková vom Max-Planck-Zentrum für Physik und Medizin und Prof. Jochen Guck, Direktor am Max-Planck-Instituts für die Physik des Lichts, zeigt, wie ein »künstlicher Pathologe« hier zukünftig helfen kann.
Erster Schritt: Gewebezerkleinerung mit dem "TissueGrinder"
Im neuen Verfahren werden mithilfe des TissueGrinders lebende Zellen schneller gewonnen. Das Gerät wurde am Fraunhofer IPA von Dr. Jens Langejürgen und seinen Kollegen entwickelt und funktioniert ähnlich wie eine Gewürzmühle. Dank speziell geformter Klingen, die über ein Mahlwerk in Rotation versetzt werden, zerkleinert er schonend das Gewebe, ohne Zellen zu zerstören oder zu verändern. "Der TissueGrinder entfaltet ein enormes Potenzial für die Probenvorbereitung in der Krebsdiagnostik und anderen medizinischen Anwendungen. Das gilt besonders für diagnostische Analyseverfahren, die auf Einzelzellen basieren und die Grundlage für die personalisierte Medizin bilden", so der Abteilungsleiter Klinische Gesundheitstechnologien Jens Langejürgen. Bisher mussten die Zellen aufwendig von Hand herauspräpariert oder mit Enzymen herausgelöst werden. Diese hinterlassen Spuren auf der Zelloberfläche und beeinflussen damit das Ergebnis der weiteren Untersuchungen.
Die automatisierte, schnelle und enzymfreie Extrahierung von lebenden Zellen mit dem TissueGrinder vereinfacht die Untersuchung von Biopsieproben also wesentlich. "Die effiziente Probenvorbereitung am Anfang des diagnostischen Prozesses ebnet den Weg für modernste Analysemethoden wie die Echtzeit-Verformbarkeitszytometrie (RT-DC) oder Verfahren der KI und verbessert zudem die Qualität der Analyseergebnisse. Wir sind überzeugt, dass der TissueGrinder eine zentrale Rolle dabei spielt, die Diagnose von Krankheiten zu optimieren. Das ermöglicht eine schnellere und genauere Behandlung der Patienten", erklärt Stefan Scheuermann, wissenschaftlicher Mitarbeiter am Fraunhofer IPA.
Zweiter Schritt: Physikalische Analyse der Zelleigenschaften dank KI
Im nächsten Schritt werden die gewonnenen Einzelzellen mit der Echtzeit-Verformbarkeitszytometrie (RT-DC) analysiert. Dabei handelt es sich um eine im Labor von Prof. Jochen Guck entwickelte markierungsfreie Methode zur Analyse der Zellverformbarkeit, die physikalischen Eigenschaften von bis zu 1000 Zellen pro Sekunde analysiert und 36-tausendmal schneller ist als ältere Methoden. Ähnlich wie das Abtasten bei einer ärztlichen Untersuchung liefert die Verformbarkeit von Zellen wichtige Informationen. Um diese zu nutzen, werden einzelne Zellen mit hoher Geschwindigkeit durch einen mikroskopischen Kanal geschoben, wo sie sich unter dem Druck und der Belastung verformen. Anhand der Bilder, die dabei aufgenommen werden, können Wissenschaftler dann physikalische Eigenschaften wie Form, Größe und Verformbarkeit bestimmen.
Stand: 16.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die WIN-Verlag GmbH & Co. KG, Chiemgaustraße 148, 81549 München einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://kontakt.vogel.de/de/win abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Dritter Schritt: Bewertung durch KI
Um eine Diagnose stellen zu können, müssen die Ergebnisse der physikalischen Analyse in einem letzten Schritt bewertet werden. Den Max-Planck-Wissenschaftlern ist es gelungen, ein KI-Modell zu entwickeln, das die komplexen Datensätze der RT-DC-Analyse auswertet und anschließend Aussagen darüber treffen kann, ob eine Probe Tumorgewebe enthält oder nicht. Außerdem konnte der Einsatz von Künstlicher Intelligenz die Bedeutung der Zellverformbarkeit als Biomarker bestätigen.
Das gesamte Verfahren nimmt von der Gewebeprobe bis zur Bewertung der Ergebnisse weniger als 30 Minuten in Anspruch und kann ohne ausgebildeten Pathologen oder Physiker durchgeführt werden. Des Weiteren kann die Methode auch eingesetzt werden, um Gewebeentzündungen in einem Modell für entzündliche Darmerkrankungen (IBD) nachzuweisen.
Das nächste Ziel der Wissenschaftler und Wissenschaftlerinnen ist es, herauszufinden, wie das Verfahren der automatisierten Zellanalyse am besten in Kliniken angewendet werden kann, um die klassische pathologische Analyse zu unterstützen und zu ergänzen.